p-group, metabelian, nilpotent (class 3), monomial
Aliases: C22.4D8, C23.45D4, C2.D8⋊6C2, C2.8(C2×D8), C22⋊C8⋊4C2, (C2×C4).37D4, D4⋊C4⋊7C2, C4⋊D4.5C2, (C2×C8).7C22, C4.29(C4○D4), C4⋊C4.63C22, (C2×C4).105C23, (C2×D4).21C22, C22.101(C2×D4), C2.17(C8.C22), (C22×C4).51C22, C2.11(C22.D4), (C2×C4⋊C4)⋊11C2, SmallGroup(64,161)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C4⋊C4 — C2×C4⋊C4 — C22.D8 |
Generators and relations for C22.D8
G = < a,b,c,d | a2=b2=c8=d2=1, cac-1=dad=ab=ba, bc=cb, bd=db, dcd=bc-1 >
Subgroups: 113 in 57 conjugacy classes, 27 normal (15 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C22⋊C8, D4⋊C4, C2.D8, C2×C4⋊C4, C4⋊D4, C22.D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C22.D4, C2×D8, C8.C22, C22.D8
Character table of C22.D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 14)(2 27)(3 16)(4 29)(5 10)(6 31)(7 12)(8 25)(9 18)(11 20)(13 22)(15 24)(17 28)(19 30)(21 32)(23 26)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 22)(3 7)(4 20)(6 18)(8 24)(9 11)(10 30)(12 28)(13 15)(14 26)(16 32)(17 21)(25 27)(29 31)
G:=sub<Sym(32)| (1,14)(2,27)(3,16)(4,29)(5,10)(6,31)(7,12)(8,25)(9,18)(11,20)(13,22)(15,24)(17,28)(19,30)(21,32)(23,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,22)(3,7)(4,20)(6,18)(8,24)(9,11)(10,30)(12,28)(13,15)(14,26)(16,32)(17,21)(25,27)(29,31)>;
G:=Group( (1,14)(2,27)(3,16)(4,29)(5,10)(6,31)(7,12)(8,25)(9,18)(11,20)(13,22)(15,24)(17,28)(19,30)(21,32)(23,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,22)(3,7)(4,20)(6,18)(8,24)(9,11)(10,30)(12,28)(13,15)(14,26)(16,32)(17,21)(25,27)(29,31) );
G=PermutationGroup([[(1,14),(2,27),(3,16),(4,29),(5,10),(6,31),(7,12),(8,25),(9,18),(11,20),(13,22),(15,24),(17,28),(19,30),(21,32),(23,26)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,22),(3,7),(4,20),(6,18),(8,24),(9,11),(10,30),(12,28),(13,15),(14,26),(16,32),(17,21),(25,27),(29,31)]])
C22.D8 is a maximal subgroup of
C24.115D4 C24.183D4 C24.117D4 (C2×D4).301D4 (C2×D4).303D4 C42.221D4 C42.226D4 C42.230D4 C42.232D4 C23⋊3D8 C24.123D4 C24.126D4 C24.127D4 C4.2+ 1+4 C4.182+ 1+4 C42.284D4 C42.286D4 C42.290D4
(C2×C2p).D8: (C2×C4).5D8 C42.278D4 C22.D24 (C2×C6).40D8 (C2×C6).D8 C22.D40 (C2×C10).40D8 (C2×C10).D8 ...
C4⋊C4.D2p: C23.5D8 C4⋊C4.12D4 C24.15D4 C42.353C23 C42.358C23 C42.423C23 C42.425C23 D4⋊4D8 ...
C22.D8 is a maximal quotient of
C23.36D8 C23.37D8 C23.38D8 C24.83D4
(C2×C2p).D8: C2.D8⋊4C4 D4⋊C4⋊C4 (C2×C4).24D8 (C2×C8).1Q8 (C2×C4).27D8 (C2×C4).28D8 C22.D16 C23.49D8 ...
(C2×C8).D2p: C23.12D8 D6.D8 D6.5D8 D10.12D8 D10.13D8 D14.D8 D14.5D8 ...
Matrix representation of C22.D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 13 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[3,3,0,0,14,3,0,0,0,0,4,0,0,0,0,13],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C22.D8 in GAP, Magma, Sage, TeX
C_2^2.D_8
% in TeX
G:=Group("C2^2.D8");
// GroupNames label
G:=SmallGroup(64,161);
// by ID
G=gap.SmallGroup(64,161);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,362,50,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,b*c=c*b,b*d=d*b,d*c*d=b*c^-1>;
// generators/relations
Export